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Numbers of neurons and their spatial variation are fundamental organizational features of the brain. Despite the large corpus of
cytoarchitectonic data available in the literature, the statistical distributions of neuron densities within and across brain areas remain
largely uncharacterized. Here, we show that neuron densities are compatible with a lognormal distribution across cortical areas
in several mammalian species, and find that this also holds true within cortical areas. A minimal model of noisy cell division, in
combination with distributed proliferation times, can account for the coexistence of lognormal distributions within and across cortical
areas. Our findings uncover a new organizational principle of cortical cytoarchitecture: the ubiquitous lognormal distribution of neuron
densities, which adds to a long list of lognormal variables in the brain.
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Introduction
Neurons are not uniformly distributed across the cerebral
cortex; their density varies strongly across areas and layers
(Brodmann 1909; Economo et al. 2008). The neuron density
directly affects short-range as well as long-range neuronal
connectivity (Braitenberg and Schüz 1991; Ercsey-Ravasz et al.
2013). Elucidating the distribution of neuron densities across the
brain therefore provides insight into its connectivity structure
and, ultimately, cognitive function. Additionally, statistical
distributions are essential for the construction of computational
network models, which rely on predictive relationships and
organizational principles where the experimental data are
missing (Hilgetag et al. 2019; Albada et al. 2022). Previous
quantitative studies have provided reliable estimates for cell
densities across the cerebral cortex of rodents (Herculano-Houzel
et al. 2013; Charvet et al. 2015; Erö et al. 2018), non-human
primates (Collins et al. 2010; Charvet et al. 2015; Collins et al.
2016; Turner et al. 2016; Atapour et al. 2019; Beul and Hilgetag
2019), large carnivores (Jardim-Messeder et al. 2017), and humans
(Economo et al. 2008; Bartheld et al. 2016). However, to the best
of our knowledge, the univariate distribution of neuron densities
across and within cortical areas has not yet been statistically
characterized. Instead, most studies focus on qualitative and
quantitative comparisons across species, areas, or cortical layers.
Capturing the entire distribution is necessary because long-tailed,
highly skewed distributions are prevalent in the brain (Buzsáki
and Mizuseki 2014) and invalidate the intuition—guided by the
central limit theorem—that the vast majority of values are in a
small region of a few standard deviations around the mean.

Here, we characterize the distribution of neuron densities
ρ across mammalian cerebral cortex. Based on the sample

histograms (Fig. 1) we hypothesize that ρ follows a lognormal
distribution, similar to many other neuroanatomical and physio-
logical variables (Buzsáki and Mizuseki 2014) such as synaptic
strengths (Robinson et al. 2021), synapse sizes (Loewenstein
et al. 2011; Santuy et al. 2018; Dorkenwald et al. 2022), axonal
widths (Wang et al. 2008; Liewald et al. 2014), and cortico-
cortical connection densities (Markov et al. 2014; Gămănuţ et al.
2018). We used neuron density data from mouse (Mus musculus),
marmoset (Callithrix jacchus), macaque (Macaca mulatta), human
(Homo sapiens), galago (Otolemur garnettii), owl monkey (Aotus
nancymaae), and baboon (Papio cynocephalus anubis) to test this
hypothesis (see Section Cell density data for a detailed description
of the data). The marmoset, galago, owl monkey, baboon, and
macaque2 data sets are based on a single subject; the mouse,
macaque1, and human data sets are based on a combination
of data across several subjects. The statistical tests conclude
that the hypothesis cannot be rejected in the majority of cases,
suggesting that the underlying distribution is compatible with
a lognormal distribution if the samples are based either on
cytoarchitectonically defined areas or on uniformly sampled
regions. Beyond the distribution across cortical areas, we show
that neuron densities within most areas of marmoset cortex are
also compatible with a lognormal distribution. To complement
the statistical tests, we perform a model comparison with several
other distributions and find that none outperform the lognormal
distribution as a model of the data within and across areas.
Finally, we show that the lognormal distribution within cortical
areas can emerge during neurogenesis from a simple cell division
model with variability. The model can furthermore account
quantitatively for the lognormal density distribution across areas
based on an inferred distribution of proliferation times of the
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Fig. 1. Neuron and cell densities ρ follow a lognormal distribution across cortical areas for multiple species. Different data sets for the same species
are denoted with subscript indices (see Section Cell density data). (A) Histogram of ρ (bars) and probability density function of a fitted lognormal
distribution (line). The number of samples N is either the number of sampled cytoarchitectonic areas (mouse, marmoset, macaque1, human, galago1,
and owl monkey) or the number of sampling frames (baboon, macaque1, and galago2). For marmoset, galago, owl monkey, baboon, and macaque2, the
data are based on a single subject; for mouse, macaque1, and human it is based on a combination of data across several subjects. (B) Z-scored ln(ρ)

histogram (bars), standard normal distribution (line), and result of the SW normality test. (C) Probability plot of z-scored ln(ρ). Discarded outliers marked
with a red cross.

areas. Additional between-area variability in the proliferation
rates is also compatible with the model but not necessary to
obtain a quantitative agreement with the observed distribution.
Thus, our model shows how the lognormal distribution of neurons
could emerge both within and across the cortical areas.

Materials and methods
Cell density data
Estimates of neuron density for the available cortical areas across
the mouse (Mus musculus), marmoset (Callithrix jacchus), macaque
(Macaca mulatta), human (Homo sapiens), galago (Otolemur garnettii),
owl monkey (Aotus nancymaae), and baboon (Papio cynocephalus
anubis) cerebral cortex were used in this study.

In the cases of mouse, marmoset, macaque1, human, galago1,
and owl monkey the data were sampled from standard cytoar-
chitectonic parcellations; abbreviated names for all areas are
listed in Table S1. Note that we use subscript indices to distin-
guish between different data sets on the same model animal, e.g.
macaque1 and macaque2.

Neuron density estimates for the mouse were published by Erö
et al. (2018), and were measured from previously published Nissl-
body-stained slices (Lein et al. 2007), where genetic markers were
used to distinguish between cell types. The data were provided
in the Allen Brain Atlas parcellation (Lein et al. 2007; Dong 2008).
To estimate the quantitative neuron and cell densities Erö et al.
(2018) used “a variety of whole brain image datasets [from the
Allen Mouse Brain Atlas]” as well as “some values reported from
anatomical experiments in the literature”, such as from (Hercu-
lano-Houzel et al. 2013).

Neuron density estimates for the marmoset cortex were pub-
lished by Atapour et al. (2019), and were measured from NeuN-
stained slices. The data were provided in the Paxinos parcellation
(Paxinos et al. 2011) and all quantitative values are derived from
the same brain of a single subject. Neuron densities within each
counting frame used in the original publication (Atapour et al.
2019, their Fig. S1) were obtained via personal communication
with Nafiseh Atapour, Piotr Majka, and Marcello G. Rosa.

The neuron density estimates in the first macaque data set,
macaque1, were previously published in visual form by Beul and
Hilgetag (2019), and were obtained from both Nissl-body- and
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NeuN-stained brain slices. Most of the numerical values were
reported by Dombrowski et al. (2001) and Hilgetag et al. (2016),
and the remaining values were provided by Sarah F. Beul and
Claus C. Hilgetag via personal communication. Counts based on
Nissl-body staining were scaled according to a linear relationship
with the counts from NeuN staining obtained from selected areas
where both types of data were available (Beul and Hilgetag 2019).
The data follow the M132 parcellation (Markov et al. 2014) and
constitute the average across subjects.

Cell density estimates for the human cortex were previously
published by Economo et al. (2008), and were measured from
Nissl-body-stained brain slices. The human data therefore most
likely reflect combined neuron and glia densities. The data were
provided in the von Economo parcellation (Economo et al. 2008);
all quantitative values are based on “the mean of the num-
bers gathered from the various brains” (Economo et al. 2008,
p. 201].

Cell and neuron density estimates for galago1&2, owl mon-
key, baboon, and macaque2 were previously published by Collins
et al. (2010), and were measured using the isotropic fractiona-
tor method. The data are sampled from common parcellation
schemes in galago1 and owl monkey, approximately equal-size
samples in the baboon, and non-uniform samples in macaque2

and galago2. We refer to uniform sampling when the cortex was
subdivided into small regions of approximately equal size and
shape presumably without large cytoarchitectonic variations (the
case for the baboon), and to non-uniform sampling when the
samples often cross cytoarchitectonic boundaries (the case for
macaque2 and galago2). All the quantitative values were derived
from one hemisphere of each subject separately. Each data set
thus describes only a single subject, without combining data
across individuals of the same species.

Note that all the samples representing either full cortical areas
or crossing area boundaries include the entirety of the gray mat-
ter, spanning all layers of cortex. The only layer-resolved data set
is the marmoset; here the mean across all layers was reported as
the density.

Lognormality testing
To test for lognormality, we take the natural logarithm, ln(ρ),
which converts lognormally distributed samples into normally
distributed samples. We then test for normality of ln(ρ) using the
Shapiro-Wilk (SW) test, the most powerful among a number of
commonly applied normality tests (Razali and Yap 2011). Large
outliers (|z-scored ln(ρ)| ≥ 3) were excluded from the normality
test; the excluded outliers are indeed cytoarchitectonically dis-
tinct areas (discussed below).

Note that any hypothesis test, including the SW test, can-
not show that the distribution is lognormal. If the p-value is
larger than a certain threshold one cannot reject the null hypoth-
esis that the distribution of ρ is lognormal, i.e. the data are
compatible with a lognormal distribution. Thus, we perform fur-
ther tests, such as statistical model comparison, and compar-
ing ln(ρ) across different animals with a Kolmogorov-Smirnov
test.

Statistical model comparison
In order to assess which model is most compatible with the data,
we compared the relative likelihood of different distributions
against each other. We included an extensive list of distributions
with support on R

+, estimated the distributions’ parameters using

maximum likelihood, and calculated the Akaike Information Cri-
terion (AIC)

AIC = 2k − 2 lnL (1)

where k is the number of estimated parameters of the model and
L is the estimated maximum likelihood. We further compare the
models using the relative likelihood (Lr)

Lr = e(AICmin−AICi)/2 (2)

where AICmin is the minimum AIC across all models and AICi is
the AIC for the ith model. The relative likelihood indicates the
probability that, from among the tested models, the ith model
most strongly limits the information loss (Burnham and Anderson
2004). We take a significance threshold of α = 0.05 on the relative
likelihood to determine whether a model is significantly worse
than the best possible model.

Model of neurogenesis with variability
Within areas
Neurons are generated through symmetric or asymmetric cell
division of neural progenitor cells (Cadwell et al. 2019). Grouping
all types of progenitor cells into a single population P, all neurons
into a population N, and excluding other post-mitotic cell types,
their population size can be modeled by the coupled system of
differential equations (Picco et al. 2018)

d
dt

P = λPP − λNP,
d
dt

N = λNP, (3)

where λP denotes the (potentially time-dependent) rate of pro-
genitor generation and λN the (potentially time-dependent) rate
of neuron generation.

Following the radial unit hypothesis (Rakic 2009), we consider
a small number of such radial units (small compared to the total
size of the area) and determine the density of progenitors ρP and
neurons ρN in these radial units by dividing through the volume
V of the considered radial units in the fully developed cortex.
Importantly, this reference volume is the same for every area.
Since Equation (3) is linear, dividing by V leads to

d
dt

ρP = λPρP − λNρP,
d
dt

ρN = λNρP. (4)

Note that this does not necessarily exclude tangential migration
as long as the net influence of the tangential migration is zero.

Progenitor cell proliferation First, we consider the proliferation
of the progenitor cells, which we assume to be governed by a noisy
rate. Modeling the noise by a zero-mean, unit-strength Gaussian
white noise process ξ , we obtain a stochastic differential equation
(SDE) for the progenitor cell density

d
dt

ρP = (λP − λN + σξ)ρP (5)

where σ controls the (potentially time-dependent) intensity of the
noise. Using the Stratonovich interpretation—assuming that the
noise process has a small but finite correlation time before taking
the white-noise limit (Van Kampen 2007)—the SDE transforms by
the same rules as an ordinary differential equation (Van Kampen
2007) such that we can rewrite the SDE (5) as d

dt ln ρP = λP −λN +σξ
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with the solution

ln ρP(t) = ln ρ0 +
∫ t

0

(
λP(s) − λN(s)

)
ds +

∫ t

0
σ(s)ξ(s)ds. (6)

Since ξ(t) is Gaussian and Equation (6) is linear, ln ρP(t) is Gaussian
and hence ρP(t) is lognormally distributed at all times t. The
parameters of this lognormal distribution are the mean of the log-
arithmic progenitor cell density μP(t) = 〈ln ρP(t)〉 and the variance
of the logarithmic progenitor cell density σP(t)2 = 〈�(ln ρP(t))2〉
(here �x ≡ x − 〈x〉). Using Equation (6), 〈ξ(s)〉 = 0, and 〈ξ(s)ξ(s′)〉 =
δ(s − s′), we obtain (cf. for instance Braumann (2007))

μP(t) = ln ρ0 +
∫ t

0

(
λP(s) − λN(s)

)
ds,

σP(t)2 =
∫ t

0
σ(s)2ds.

(7)

Thus, the progenitor cell densities are lognormally distributed at
all times with parameters μP(t) and σP(t)2. The corresponding first
2 moments of the progenitor cell density are

〈ρP(t)〉 = eμP(t)+ 1
2 σP(t)2

,

〈ρP(t)ρP(t′)〉 = 〈ρP(t)〉〈ρP(t′)〉e
∫ min(t,t′ )

0 σ(s)2ds,
(8)

where we used the characteristic functional of the Gaussian
white noise ξ(t) (Van Kampen 2007), 〈exp(i

∫ ∞
−∞ k(s)σ (s)ξ(s)ds)〉 =

exp(− 1
2

∫ ∞
−∞ σ(s)2k(s)2), with the test function ik(s) = 1[0,t](s) for

the first moment (here 1A(s) denotes the indicator function) and
test function ik(s) = 1[0,t](s) + 1[0,t′](s) for the second moment as

well as
∫ ∞
−∞ 1[0,t](s)1[0,t′](s)σ (s)2ds = ∫ min(t,t′)

0 σ(s)2ds.

Neurogenesis Next, we consider neurogenesis. We assume that
the noise affects primarily the rate of progenitor cell proliferation.
The solution to Equation (4) for a given ρP(t) and initial condition
ρN(0) = 0 is

ρN(t) =
∫ t

0
λN(s)ρP(s)ds. (9)

Since ρN(t) is the integral of the (temporally correlated) lognormal
process ρP(s) it is formally not lognormal. However, the sum of
independent lognormal random variables is well approximated by
a lognormal distribution with matched first and second moment
(Fenton 1960; Marlow 1967). Here, we extend this approximation
to the integral of temporally correlated lognormal processes. The
first 2 moments of the neuron density follow from the averages of
Equation (9),

〈ρN(t)〉 =
∫ t

0
λN(s)〈ρP(s)〉ds,

〈ρN(t)2〉 =
∫ t

0

∫ t

0
λN(s)λN(s′)〈ρP(s)ρP(s′)〉dsds′.

(10)

The lognormal approximation with matched moments is param-
eterized by

μN(t) = ln〈ρN(t)〉 − 1
2

σN(t)2,

σN(t)2 = ln
(

1 + 〈�(ρN(t))2〉
〈ρN(t)〉2

)
,

(11)

where we used 〈x〉 = eμ+ 1
2 σ 2

and 〈�x2〉 = 〈x〉2[eσ 2 − 1] for a
lognormal variable x. Note that the parameters of the lognor-
mal distribution are the mean of the logarithmic neuron density

μN(t) = 〈ln ρN(t)〉 and the variance of the logarithmic neuron
density σN(t)2 = 〈�(ln ρN(t))2〉.

Across areas
Thus far, the model accounts for the lognormal distribution of
neuron densities within an area. Across areas, we hypothesize
that the distribution of proliferation times (Rakic 2002; Cadwell
et al. 2019) is the most important cause of the variability in the
neuron densities. To characterize an individual area, we consider
the average density 〈ρN(t)〉. For convenience, we introduce the
auxiliary quantity

y(t) = ln
(∫ t

0
λN(s)e

∫ s
0 (λP(r)−λN(r))dr+ 1

2

∫ s
0 σ(r)2drds

)
(12)

such that the logarithm of the mean neuron density simplifies to

ln〈ρN(t)〉 = ln ρ0 + y(t) (13)

where we inserted Equation (7) into Equation (8) to obtain the
mean of the progenitor cell density, which we then plugged into
Equation (10).

In order to arrive at a lognormal distribution of the mean
density 〈ρN(t)〉 across areas, the terms on the r.h.s. of Equation
(13) have to be normally distributed. In particular, this means
that the proliferation times have to be distributed such that y(t)
is Gaussian. The distribution p(y) of y = y(t), which is a strictly
monotonic transformation of the proliferation time t, is related to
the distribution of proliferation times p(t) through (Van Kampen
2007)

p(t) =
∣∣∣ dy

dt

∣∣∣N (
y(t) |μy, σ 2

y

)
. (14)

The first factor on the r.h.s. can be obtained from Equation (12)
and the second factor is a Gaussian probability density with mean
μy and variance σ 2

y . Hence, Equation (14) fully specifies the distri-
bution of proliferation times; conversely, for proliferation times
distributed according to Equation (14), the mean neuron density
〈ρN(t)〉 is lognormally distributed across areas. Note that since the
Gaussian has support on the entire real line, the neuron density
needs to diverge for t → ∞. Thus, we restrict λP(t), λN(t), and σ(t)
such that the neuron density would diverge in the hypothetical
limit of an infinite proliferation time.

Parameter estimation
Above, we showed how a noisy rate of progenitor proliferation
leads to a lognormal distribution of progenitor cell densities and
neuron densities within an area and, for the distribution of pro-
liferation times (14), to a lognormal distribution of (within-area)
mean neuron densities across areas. In order to compare the
predictions of the model with the data, we estimate the model’s
parameters using the available experimental data.

We restrict the analysis to the simplified case of constant rate
λP, λN, and noise intensity σ and identical rates of progenitor and
neuron proliferation, λP = λN ≡ λ. In particular the assumption
of a constant rate (note that this is not a necessary assumption
for the above theory) is simplifying because the cell cycle length
varies during development (Kornack and Rakic 1998). Despite this
simplifying assumption, the model quantitatively matches the
data for the parameters inferred below (Fig. 5).

First, we determine the rate λ from the average cell cycle
length of progenitor cells determined from a short period of 2
hours (Kornack and Rakic 1998) such that fluctuations and the
conversion of progenitor cells to neurons can be neglected. For
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a given cell cycle length 	, the number of cells increases as
2t/	 = exp

(
t ln(2)/	

)
. Thus, the cell cycle length 	 corresponds to a

proliferation rate λ = ln(2)/	. Using the average cell cycle length
of 	 ≈ 1.5 days from macaque (Kornack and Rakic 1998; Picco et al.
2018), we obtain λ ≈ 0.46 days−1. The proliferation time of areas
varies between 30 and 60 days in macaque (Rakic 2002) which
we expect to be similar in the marmoset since macaques and
marmosets have similar gestation times of 5.5 and 4.5 months,
respectively (Schultz-Darken et al. 2016). Thus, we set the median
proliferation time per area to t1/2 = 45 days, which determines
μy = y(t1/2) because the median of the distribution (14) is given
by 1

2 = ∫ t1/2

0 p(t)dt = ∫ y(t1/2)

−∞ N (y |μy, σ 2
y )dy and the median of the

normal distribution is at y = μy.
In addition, the mean μy of the auxiliary variable y is also con-

strained by the distribution of the variance σ 2
N of the logarithmic

neuron density across areas; we will use this additional constraint
to determine the noise intensity σ . For a fixed proliferation time t,
σN(t)2 is given by Equation (11). Since σ 2

N is a strictly monotonically
increasing function of t, its distribution can be written in terms of

that of the inverse t(σ 2
N), i.e. p(σ 2

N) =
∣∣∣ dt

dσ 2
N

∣∣∣ p
(
t(σ 2

N)
)
. Using Equation

(14) for the distribution of proliferation times p(t) and Equation
(12) to relate y(t) and t, the distribution of σ 2

N across areas is thus

p(σ 2
N) = 1

|f ′(f−1(σ 2
N))| N

(
f−1(σ 2

N) |μy, σ 2
y

)
(15)

where f (y) = σ 2
N(t(y)) with t(y) the inverse of

y(t) = ln
2λ

σ 2
+ ln(e

1
2 σ 2t − 1), (16)

which follows from evaluating Equation (12) with λP = λN ≡ λ and
constant σ 2, and f−1(σ 2

N) is the inverse of f (y). Explicitly, it is given
by

f−1(σ 2
N) = ln

λ

σ 2
+ ln

(√
8
(
3eσ 2

N − 1
) − 4

)
, (17)

which follows from inserting t(y) into σ 2
N(t) determined by Equa-

tion (11) and solving it for y. The maximum likelihood estimator μ̂y

for μy with the likelihood p(σ 2
N) is the empirical average of f−1(σ 2

N)

across areas because the Jacobian 1/|f ′(f−1(σ 2
N))| in Equation (15)

does not depend on the parameters and hence does not affect the
Gaussian likelihood of μy. Using the marmoset data, we obtain
μ̂y ≈ 3.07. We finally arrive at σ ≈ 0.061 days−1/2 by enforcing
μ̂y = y(t1/2), where y(t) is given by Equation (16), with t1/2 = 45
days. With σ and μy determined, we choose σy such that less than
2% of the proliferation times are smaller than 30 days or larger
than 60 days. This leads to σ 2

y ≈ 0.02.
It remains to estimate the initial progenitor density ρ0. To this

end, we consider the distribution of ln〈ρN〉. For a fixed proliferation
time t, ln〈ρN(t)〉 is determined by Equation (13). Thus, it is also a
monotonic transformation of the random variable t, with distribu-
tion p(ln〈ρN〉) =

∣∣∣ dt
d ln〈ρN〉

∣∣∣ p
(
t(ln〈ρN〉)). Using the linear dependence

between ln〈ρN〉 and y, Equation (13), in combination with the
distribution of proliferation times (14), we obtain

p(ln〈ρN〉) = N
(

ln〈ρN〉 | ln ρ0 + μy, σ 2
y

)
. (18)

The maximum likelihood estimator for ln ρ0 + μy is the empirical
average of ln〈ρN〉 across areas; subtracting μy we obtain ρ0 ≈ 3.8×
103 cells/mm3.

Note that in the simplified case considered here, the resulting
distribution of proliferation times approaches a lognormal distri-
bution in the left tail and a Gaussian in the right tail: for small

times, 1
2 σ 2t 
 1, a Taylor expansion of y(t) leads to y(t) ≈ ln(λt)

and thus a lognormal distribution; for large times, 1
2 σ 2t � 1, y(t)

grows linearly with y(t) ≈ ln 2λ
σ 2 + 1

2 σ 2t and thus the distribution
approaches a Gaussian.

Simulation details We solve the SDE (5) using the Euler-
Maruyama method with time step �t = 0.05 in total Nsample times
with identical parameters for each of the 114 areas. Because the
number of samples per area Nsample varies, we randomly choose
Nsample for each area following Nsample ∼ Poisson(36.6) where 36.6
is the average sample size per cortical area in the marmoset data.
The subsequent analysis of the model data is identical to the
analysis of the experimental data.

Results
Lognormal distribution of neurons across cortical
areas
We consider the neuron density distribution across cortex for sev-
eral species (see Section Cell density data). The SW test (see Sec-
tion Lognormality testing) concludes that the normality hypoth-
esis of ln(ρ) cannot be rejected for mouse, marmoset, macaque1,
human, galago1, owl monkey, and baboon (Fig. 1B). For the data
sets macaque2 and galago2, the normality hypothesis is rejected
(P< 0.05); however, in these data sets, the densities were sam-
pled neither uniformly nor based on a cytoarchitectonic parcella-
tion. The normality hypothesis for the distribution of logarithmic
densities across cytoarchitectonic areas is further supported by
Figure 1C, which shows that the relation between theoretical
quantiles and ordered samples is almost perfectly linear except
for macaque2 and galago2.

For lognormality testing, we removed the large outliers (marked
with a red cross in Fig. 1C). The outliers are area V1 in macaque1

and marmoset, which have densities far outside the range for all
other areas in both species, and area APir in marmoset, which has
a noticeably distinct cytoarchitecture with respect to the rest of
the cerebral cortex (Atapour et al. 2019).

Next, we test the z-scored ln(ρ) from the different species
and data sets against each other and find that they are pairwise
statistically indistinguishable (α = 0.05 level; two-sample two-
sided Kolmogorov-Smirnov test, see Fig. S1 for full test results).

Additionally, we control for cell types in the distributions of
the mouse, galago1, owl monkey, and baboon data. In the mouse
data, different types of neurons and glia were labeled with specific
genetic markers and their respective densities were reported sepa-
rately for all cell types (Erö et al. 2018). In the galago1, owl monkey,
and baboon data sets, the total numbers of cells and neurons were
reported separately (Collins et al. 2010). We show that the neuron
density distributions for all subtypes of neurons in the mouse
are compatible with a lognormal distribution (Fig. S2; SW test on
ln(ρ), P > 0.05) while glia are not—with the notable exception
of oligodendrocytes. When neurons and glia are pooled together
(Fig. S2C and D), the distribution of ln(ρ) still passes the SW
normality test, likely due to the distribution being dominated by
the neurons. Similar observations are made in the baboon data,
where the glia do not pass the lognormality test, but the neurons
do. In the cases of galago1 and owl monkey both the neurons
and glia pass the lognormality test (Fig. S2), which may, however,
be partly due to the small number of density samples (N = 12
in both cases). Thus, the mouse and baboon data—with large
samples sizes (N = 42 and N = 142, respectively)—suggest that it is
the neuron densities that follow a lognormal distribution but not
necessarily the glia densities.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad160#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad160#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad160#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad160#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad160#supplementary-data
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Fig. 2. Neuron and cell densities ρ over flattened cortical maps. Neuron and cell densities are color-coded, with darker colors indicating higher densities.
Cortical maps not to scale due to the differences in brain size. All cortical flat maps are aligned in the same coordinate directions, showing a clear
posterior–anterior gradient in all species. P: posterior, A: anterior, S: superior, I: inferior.

Finally, we perform a control test on the different staining
types—Nissl and NeuN—using the macaque1 data. The staining
methods differ in their treatment of glia: NeuN tends to label
neuronal cell bodies only while Nissl indiscriminately labels both
neurons and glia (Yurt et al. 2018). We show that regardless of
staining type the cell densities pass the lognormality test (Fig. S3;
SW test on ln(ρ) with P > 0.05), suggesting that counting some
glia in the cell densities does not confound our analysis of the
macaque1 data.

Taken together, the normality test, the quantile plots, the pair-
wise tests, the cell-type comparison, and the staining method
comparison provide compelling evidence that the logarithmized
neuron densities are normally distributed across cytoarchitec-
tonic areas. This also holds for uniformly sampled neuron den-
sities (baboon) but not for a sampling that is neither uniform
nor based on a cytoarchitectonic parcellation (macaque2, galago2).
Thus, the neuron densities are consistent with a lognormal distri-
bution across the different cortical areas, as long as sampling is
uniform.

The observation of a lognormal distribution across cortical
areas raises the question whether there is a spatial pattern of
densities across cortex consistent for all species. To address this
question, we visualized the neuron or cell density over flattened
representations of the cortex for all data sets having a flat map (8
out of the 9 included in this study; Fig. 2). Consistent with previous
reports (Collins et al. 2010; Erö et al. 2018; Atapour et al. 2019;
Beul and Hilgetag 2019), we observe a clear posterior-to-anterior
density gradient in all the species shown in this study. Visual areas
display the highest densities, whereas motor and frontal areas
display the lowest density.

Lognormal distribution of neurons within
marmoset cortical areas
To investigate whether the lognormal distribution holds within
cortical areas, we leverage detailed estimates of neuron density
in marmoset (Atapour et al. 2019). Neurons were counted within
150 × 150 μm counting frames for 4 strips per cortical area, all
originating from the same subject. The within-area distributions

of the sampled neuron densities ρs across the counting frames
in 3 representative areas (MIP, V2, and V3; Fig. 3A) again suggest
a lognormal distribution. As before, we check for lognormality
by testing ln(ρs) for normality with the SW-test (for full test
results see Table S2). At significance level α = 0.05, the normality
hypothesis is not rejected for 89 out of 116 areas; whereas at
α = 0.001, this is the case for 114 out of 116 areas (Fig. 3B and C).
Thus, regardless of the precise significance threshold, the lognor-
mality hypothesis cannot be rejected within most cortical areas
in the marmoset cortex. The contribution to the neuron density
distributions differs across cortical depth: the highest densities
tend to occur in Layer 2 or around the center of the gray matter
depth, whereas the lowest values appear either in the upper layers
or near the white matter boundary (Fig. 3D). Taken together, the
findings from Figs. 1 and 3 show that the lognormal distribution
of neuron densities can be found at different scales, both within
and across the cortical areas.

Statistical model comparison
To complement the statistical hypothesis tests on the logarithmic
densities, we compared the lognormal model with 6 other
statistical distributions based on the relative likelihood (see
Section Statistical model comparison). We included statistical
distributions with support in R

+ since neuron densities cannot be
negative: lognormal, truncated normal, inverse normal, gamma,
inverse gamma, Lévy, and Weibull. Of these, the lognormal,
inverse normal, and inverse gamma distributions stand out as
the distributions with the highest relative likelihoods, both across
the entire cortex and within cortical areas (Fig. 4A, Fig. S4A).
A visual inspection of the fitted distributions reveals that the
lognormal, inverse normal, and inverse gamma distributions
produce virtually indistinguishable probability densities (Fig. 4B,
Fig. S4C); indeed, the relative likelihoods of the 3 models are above
0.05 in all cases. This suggests that the data could theoretically be
distributed according to either the lognormal, inverse normal,
or inverse gamma distribution. To narrow down the model
comparison, we show below how the lognormal distribution could
arise from the simple biophysical process of noisy cell division. In

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad160#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad160#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad160#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad160#supplementary-data
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Fig. 3. Neuron densities ρs follow a lognormal distribution within most areas of marmoset cortex. (A) Sample histograms of ρs and fitted lognormal
distributions for 3 areas representing different degrees of lognormality. (B) Number of areas with p-values in the given significance ranges. (C) Log10 of
p-value of SW normality test of ln(ρs) on a flattened representation of the marmoset cortex (Atapour et al. 2019). (D) Scatter plot of sample densities
against cortical depth and occurrence of highest and lowest density across normalized cortical depth (0 = L1/L2 boundary, and 1 = white matter
boundary).

contrast, we are not aware of a simple mechanism that could give
rise to inverse normal or inverse gamma distributions.

A minimal model for the emergence of
lognormally distributed neuron densities
The finding of lognormally distributed neuron densities raises
the question how the intricate process of neurogenesis (Dehay
and Kennedy 2007; Rakic 2009; Cadwell et al. 2019) culminates in
this distribution within and across areas in several mammalian
species.

On the within-area level, a minimal model shows that
there is no need for a specific regulatory mechanism (see
Model of neurogenesis with variability for further details): assum-
ing that the proliferation of the neural progenitor cells is governed
by a noisy rate λP(t) + ξ(t), where λP(t) denotes the mean rate and
ξ(t) is a zero-mean Gaussian white noise, the resulting density of
progenitor cells is lognormally distributed.

The cells produced by the cell division of the neural progenitor
cells are terminally differentiated neurons, which thus do not
divide further. This renders the final neuron density a linear
integral of the (changing) neural progenitor cell density. While
this additive process formally does not preserve the lognormality
of the neural progenitor density, the resulting neuron density
distribution is statistically indistinguishable from a lognormal
distribution with matched moments (SW test P = 0.4 with N =
2, 000 samples in Fig. S5F)—akin to the lognormal approximation
for the sum of independent lognormal random variables (Fenton
1960; Marlow 1967). Put differently, the lognormally distributed
density of neural progenitor cells leads to an approximately log-
normally distributed density of neurons. Thus, the lognormal
neuron density distribution within areas could be a hallmark of
a progenitor cell proliferation process with variability.

On the across-area level, the proliferation times for each area
become relevant, since they vary up to twofold (Rakic 2002). We
therefore hypothesize that the distribution of proliferation times
is the most important source of the variability across areas (vari-
ability due to area-specific proliferation rates (Lukaszewicz et al.
2005) is discussed below). Since the average neuron density within

an area is determined by the proliferation time, the distribution
of proliferation times specifies the distribution of area-averaged
neuron densities across areas. This relation can be inverted to
determine the distribution of proliferation times from the log-
normal distribution of (within-area) average neuron densities (see
Model of neurogenesis with variability). A specific prediction of
this model is that the logarithmic mean ln(〈ρ〉) and variance
of ln(ρ) are related through the proliferation time—both mean
and variability increase with proliferation time in approximate
proportion to each other (see Equations (11) and (13), respectively).
Indeed, we observe a linear correlation in the marmoset data
(Pearson r = 0.51, P ≤ 10−8, Fig. 5C) as well as in the data produced
by the model (Pearson r = 0.4, P ≤ 10−4, Fig. 5D).

Discussion
In this work, we show that neuron densities are compatible with
a lognormal distribution across cortical areas in multiple mam-
malian cortices and within most cortical areas of the marmoset,
uncovering a ubiquitous organizational principle of cerebral cor-
tex. The distributions of neuron and cell densities in general
depend on the underlying spatial sampling: We found that neuron
densities follow a lognormal distribution within cytoarchitec-
tonically defined areas, across such areas, and when averaged
within small parcels uniformly sampled across cortex, but not
when sampled in a highly non-uniform manner not following
cytoarchitectonic boundaries.

Furthermore, we show that none of a sizeable list of statistical
models outperform the lognormal distribution. Our results are
in agreement with the observation that surprisingly many char-
acteristics of the brain follow lognormal distributions (Buzsáki
and Mizuseki 2014). Moreover, this analysis highlights the impor-
tance of characterizing the statistical distributions of brain data
because simple summary statistics—such as the mean or stan-
dard deviation—lack nuance and are not necessarily a good rep-
resentation of the underlying data.

These findings are based on 9 publicly available data sets for
7 different species. While the majority of these have sample sizes
in the range 36–114, for completeness we also included 2 data sets

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad160#supplementary-data
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Fig. 4. Statistical model comparison across the entire cortex of different animals. (A) Relative likelihood for 7 compatible statistical models for all
available area-level neuron density data sets; numerical values indicated for each model and animal. The red color indicates a relative likelihood < 0.05
with respect to the model with the highest likelihood. (B) The 3 best statistical models (according to the relative likelihood) fitted to the neuron density
histograms in each animal; the 3 models produce visually nearly indistinguishable fits.

Fig. 5. Neuron densities in the marmoset are compatible with a minimal
model of neurogenesis with variability. (A, B) Distribution of neuron
densities across areas for the marmoset (A) and the model (B). The SW
test does not reject normality of ln(ρ) for both distributions. (C, D) The
logarithmic mean ln(〈ρ〉) and the variance of the logarithmic density
var(ln(ρ)) for each area are significantly correlated with each other (one-
sided Wald test with t-distribution) for the marmoset (C) and the model
(D). The inset in (D) displays the inferred distribution (dashed line; see
Equation (14)) of proliferation times alongside the sample used for the
simulation (bars). For all parameters of the model and further details, see
Model of neurogenesis with variability.

consisting of 10 samples each. As the latter sample size does
not lead to a powerful test of lognormality, it would be desirable
to repeat the analysis with more extensive data once available. In
addition, data from multiple subjects of the same species would
allow testing the consistency of the lognormal distribution across
individuals.

Finally, we propose a minimal model that accounts for the
emerging lognormal distributions based on a noisy cell division
process of the neural progenitor cells and their specification to
neurons. In principle, a multiplicative process with Gaussian noise
leads to lognormal distributions at any scale; the additive specifi-
cation from progenitors to neurons approximately preserves the
lognormality. However, this noisy process alone cannot explain
the coexistence of lognormal distributions of ρ at different scales
(within and across areas). When the distributed proliferation
times are considered, the model can account for both within-area
and across-area distributions.

The model explains the observed lognormality based on a min-
imal set of assumptions; hence, we did not include further mech-
anisms like cell death (apoptosis), migration, volumetric growth,
the generation of other postmitotic cells, or area-specific prolifer-
ation rates. However, none of these additional mechanisms affect
the main conclusions. Apoptosis is a widespread phenomenon
(Oppenheim 1991; Inglis-Broadgate et al. 2005; Kalinichenko and
Matveeva 2008) during neurogenesis and it can be modeled as a
multiplicative process affecting the neuron density alone. Thus,
the neuron density still depends linearly on the progenitor cell
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density and approximately maintains lognormality. While apop-
tosis could add to the inter-area variability, our model shows that
it is not necessary for the distribution of variability per se—in
agreement with Oppenheim et al. (1989) who found that the final
pattern of spatial variability in spinal motoneuron density was
already present before the onset of cell death and migration.
Following the radial unit hypothesis (Rakic 2009), we focus on
radial migration of progenitor cells, ignoring tangential migration.
In our model, this assumption can be relaxed as long as there
is no net increase or decrease in progenitor cell density due to
tangential migration. Furthermore, we modeled the cell density
in a fixed final target volume; thus, the effects of volumetric
growth do not affect the model. The generation of other post-
mitotic cell types would reduce the effective proliferation rate of
progenitor cells; this only leads to quantitative but not qualitative
changes in the resulting distributions. Finally, it has been shown
that cortical areas can have different proliferation rates (Polleux
et al. 1997; Lukaszewicz et al. 2005; Dehay and Kennedy 2007).
If the proliferation rates are constant in time and lognormally
distributed across areas, this additional variability would broaden
the neuron density distribution but preserve the lognormal shape.
However, in contrast to distributed proliferation times, it would
not lead to the correlation between mean density and variability
seen in the data (Fig. 5C), because the proliferation rate affects the
mean density but not the variance of the logarithmic progenitor
density (see Eq. (7)). Furthermore, to the best of our knowledge, a
difference in proliferation rate has only been shown for areas V1
and V2 (Lukaszewicz et al. 2005; Dehay and Kennedy 2007)—thus,
we speculate that this is an important reason for the drastically
higher neuron density in V1.

In contrast to the neuron densities, we observed that the
densities of most glia types are not compatible with a lognor-
mal distribution (Fig. S2). Across brain areas, our model requires
distributed proliferation times to explain the emergence of the
lognormal distribution of neurons. However, it is established that
gliogenesis occurs after neurogenesis in both rodents and humans
(Miller and Gauthier 2007; Semple et al. 2013), and glia are likely
to have proliferation times distinct from those of neurons. Thus,
given different glia proliferation times, our model does not nec-
essarily predict a lognormal distribution across cortical areas,
in agreement with the statistical tests from experimental data
(Fig. S2). The principles governing the within-area distributions
should, however, be very similar for both glia and neurons; thus,
within cortical areas, our model predicts lognormal distributions
of glial densities. Unfortunately, we are not aware of any experi-
mental quantitative data on which this prediction could be tested.

Given the fact that cortical space is limited, one may expect
a negative correlation between neuron density and soma size.
We investigated this for the human data set, the only data set
providing soma sizes. Indeed, there is a significant correlation
(Pearson r = 0.67, P ≤ 10−30, Fig. S6) between inverse soma sizes
and cell density in the human data set. Here, soma sizes were
measured in terms of mean surface areas from the Nissl-stained
slices by approximating the soma shapes as ellipses (π/4 times
height times width). Since the cell densities were obtained linearly
from the 2D densities, the total surface area taken up by the cells
is proportional to their density times their mean surface area.
Despite the positive correlation, this product is far from constant
(Fig. S6), and hence also the area taken up by the extracellular
space, neurites, and other structures such as blood vessels varies
across areas and layers. To disentangle how these various factors
are related to neuron density, joint measurements of the different
components would be needed.

In principle, cortex-wide organizational structures might be
by-products of development or evolution that serve no compu-
tational function (Otopalik et al. 2017)—but the fact that we
observe the same organizational principle for several species and
across most cortical areas suggests that the lognormal distribu-
tion serves some purpose. Heterogeneous neuron densities could
assist computation through their association with heterogene-
ity in other properties such as connectivity and neuronal time
constants (Rall 1969; Hilgetag et al. 2019); indeed, such hetero-
geneity is known to be a valuable asset for neural computation
(Duarte and Morrison 2019; Perez-Nieves et al. 2021). Alternatively,
localized concentration of neurons in certain areas and regions
could also serve a metabolic purpose since centralization might
support efficient transport of metabolites across neurons and
astrocytes (Bélanger et al. 2011; Magistretti and Allaman 2015).
Energy efficiency is particularly relevant since a large portion of
the brain’s energy consumption is used to support the communi-
cation between neurons (Attwell and Laughlin 2001; Laughlin and
Sejnowski 2003). Also from the perspective of cortical hierarchies
it makes sense to have few areas with high neuron densities
and many areas with lower neuron densities: Low-density areas
contain neurons with large dendritic trees (Elston and Rosa 1998)
receiving convergent inputs from many neurons in high-density
areas lower in the hierarchy. The neurons with extensive den-
dritic trees in higher areas are involved in different, area-specific
abstractions of the low-level sensory information (Kumar et al.
2007; Brincat et al. 2018). All in all, there is probably not a single
factor that leads to lognormal neuron densities in the cortex;
further research will be needed to refine our findings and uncover
the functional implications.
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